Small Modular Reactor Assessments

A service of
Ux Consulting
1501 Macy Drive
Roswell, GA 30076
(770) 642-7745
www.uxc.com
Table of Contents

1 – Introduction & Overview ... 18
 Target Audience .. 19
 Qualifying Statements .. 19
 Structure of Report ... 21
 • Part 1: SMR Market Overview .. 21
 • Part 2: Individual SMR Design Evaluations 21
 • Part 3: Keys to SMR Deployment and SMR Market Analysis 22

2 – SMR’s Past and Present .. 23
 History of SMRs .. 23
 Definition of an SMR .. 26
 Reasons for Renewed Interest in SMRs 26
 • SMRs as Distributed Generation .. 26
 • Government Support for SMRs ... 27
 • Private Sector Interest in SMRs ... 28
 SMRs in Russia .. 28
 Summary .. 30

3 – Advantages and Challenges for SMRs 31
 Advantages of SMRs .. 31
 • Flexibility and Versatility ... 31
 • Multiple Applications .. 31
 SMR Process Heat and Other Uses .. 32
 • Low Capital Costs .. 36
 • Technological Improvements .. 36
 Challenges for SMRs .. 37
 • Technical Barriers ... 37
 Lack of Proof of Technology ... 37
 Advanced Materials .. 37
 Reactor Pressure Vessels ... 37
 Containments and Aircraft Impact Resistance 38
 Implementation of Multiple Module Plant 38
 Transportability ... 38
 Fuel Designs and Refueling ... 38
 • Commercial Hurdles ... 39
 High Lifecycle Costs .. 39
 Regulatory/Licensing Hurdles ... 39
 Lack of Commercial Experience ... 39

4 – SMR Economics ... 40
 SMR Economic Overview .. 40
 • SMR Construction Cost Estimates ... 43
 SMR vs. LWR Lifecycle Costs ... 44
 SMR Comparative Cost Data ... 45
 SMR Cost Uncertainties ... 46
 Summary ... 47

5 – SMR Detailed Assessments Overview 49
 Main SMR Technologies ... 49
 Overview of 12 Leading SMR Designs 50
 • Pressurized Water Reactor (PWR) Designs 50
 IRIS ... 50
 mPower ... 51
 NuScale ... 52
 SMART .. 52
 KLT-40S .. 53
 VBER-300 .. 54
 • High Temperature Reactor (HTR) Designs 54
 PBMR ... 55
 HTR-PM .. 56

© 2010 UxC
Table of Contents

GT-MHR	57
- Liquid Metal Reactor (LMR) Designs | 57
- mPower | 58
- Hyperion | 58
- PRISM | 59

UxC Approach to Analyzing 12 Leading SMR Designs | 60
UxC Rationales for Selecting 12 Leading SMR Designs | 61

6 – PWR-type SMRs | 63

Westinghouse IRIS
- Background | 64
- Design Overview | 65
- Target Applications | 66
- Specific Design Features | 67
 - Pressurizer | 69
 - Reactor Coolant Pumps | 74
 - Steam Generators | 74
 - Control Rod Drive Mechanism (CRDM) | 75
 - Neutron Shield and Partial Reflector | 75
 - Containment | 75
- Safety Features | 77
- Passive Safety Systems | 77
- Fuel Characteristics | 78
- Spent Fuel Management | 79
- Fuel Supply | 80
- Construction and Manufacturing Issues | 81
- Supply Chain Issues | 81
- Economics | 82
- Regulatory Status | 82
- Conclusions | 85
 - Pros and Cons Analysis | 85
 - Prospects for Deployment | 86

B&W mPower | 89
- Company Overview | 89
- Background | 91
- Design Overview | 95
- Target Applications | 97
- Specific Design Features | 99
 - Integral Reactor Pressure Vessel | 99
 - Primary Integral Loop | 100
 - Integral Steam Generator | 101
 - Integral Reactor Coolant Pumps (ROPs) | 102
 - Integral Control Rod Drive Mechanisms (CRDMs) | 105
 - Core | 106
 - Integral Pressurizer | 106
 - Secondary Loop | 107
 - Power Conversion System | 108
 - Containment | 108
- Fuel Characteristics | 109
- Passive Safety Features | 109
- Additional Unique Features | 111
 - Multiple mPower Modules Configurations | 112
- Fuel Supply | 113
- Spent Fuel Management | 113
- Construction and Manufacturing Issues | 114
- Supply Chain Issues | 115
- Economics | 116
- Regulatory Status | 116
- Conclusions | 117
 - Pros and Cons Analysis | 118
 - Prospects for Deployment | 119
Table of Contents

- Design Overview .. 186
- Target Applications ... 187
- Specific Design Features .. 191
 - General Plant Layout .. 191
 - Reactor Core and Fuel Assemblies ... 195
 - Safety Systems .. 197
 - Reactor Emergency Protection System .. 198
 - Residual Heat Removal .. 198
 - Multiple Barriers ... 198
- VBER-Based Floating Power Unit (FPU) .. 198
 - Stationary FPU Containment ... 203
 - General Pontoons Configurations .. 204
 - FPU Safety Features ... 205
 - FPU Fuel Supply .. 206
- Spent Fuel Management ... 206
- Construction and Manufacturing Issues .. 207
- Economics .. 209
- Regulatory Status .. 210
- Conclusions ... 211
 - Pros and Cons Analysis ... 211
 - Prospects for Deployment ... 212
- KLT-40S Introduction .. 213
- KLT-40S Reactor Design Milestones ... 213
- Design Overview .. 214
- Target Applications .. 217
- Specific Design Features .. 218
 - Core and Reactor Pressure Vessel Features .. 220
 - Reactor Coolant Pumps and Coaxial Suction/Discharge Connections 222
 - Steam Generators .. 224
 - Reactor Coolant Pumps .. 224
- KLT-40S Co-generation Applications .. 225
- Fuel Characteristics .. 226
- Containment .. 226
- Safety Features ... 227
- Additional Unique Safety Features ... 228
- Fuel Supply .. 229
- Spent Fuel Management ... 229
- Construction and Manufacturing Issues .. 231
- Economics .. 232
- Regulatory Status .. 232
- Conclusions ... 233
 - Pros and Cons Analysis ... 233
 - Prospects for Deployment ... 234

7 – HTR-type SMRs

- HTR Background ... 235
- South Africa PBMR ... 235
 - Company Overview ... 237
 - PBMR Technology Team Overview ... 237
 - Pebble-Bed Reactor Technology Background .. 239
 - High-Temperature PBMR Reactor Design Overview .. 242
 - PBMR Fuel Design .. 243
 - High-Temperature Specific Design Features ... 244
 - High Temperature Target Applications .. 246
 - General Low-Temperature PBMR Design Overview ... 249
 - Specific Design Features ... 250
 - PBMR Reactor Systems Based on HTR Module Experience 251
 - Primary Loop ... 253
 - Secondary Loop ... 254
 - Passive Heat Transfer Pathways (High- and Low-Temperature PBMR) 254
 - Core and Reactor Pressure Vessel Features .. 255

© 2010 UxC
Table of Contents

Small Modular Reactor Assessments - Dec 2010

On-line Refueling System ... 256
Neutron Control and Instrumentation Requirements 257
- Fuel Supply ... 258
- Spent Fuel Management ... 259
- Testing of PBMR Components ... 259
- Construction and Manufacturing Issues 260
- Supply Chain Issues .. 261
- Economics .. 262
- Regulatory Status ... 262
- Conclusions .. 263
 - Pros and Cons Analysis .. 263
 - Prospects for Deployment ... 265

China HTR-PM... 267
- Company Overview ... 267
- Design Development Milestones ... 268
- Design Overview ... 272
- Target Applications ... 273
- Specific Design Features ... 273
 - Reactor Pressure Vessel and Reactor Internal Components 277
 - Steam Generator ... 278
 - Blower .. 278
 - High-Efficiency Steam-Turbine ... 279
 - Control Rods and Shutdown Systems 281
- Fuel Characteristics ... 282
- Safety Features ... 283
- Electrical, Digital Instrumentation and Control (I&C) Systems 283
- Fuel Supply .. 283
- Spent Fuel Management ... 284
- Testing of HTR-PM Components ... 284
- Construction and Manufacturing Issues 286
- Supply Chain Issues .. 287
- Economics .. 287
- Regulatory Status ... 288
- Conclusions .. 289
 - Pros and Cons Analysis .. 289
 - Prospects for Deployment ... 290

General Atomics GT-MHR .. 291
- Company Overview ... 291
- GT-MHR Background .. 292
- GT-MHR Design Progress Milestones .. 295
- Design Overview ... 296
- Target Applications ... 297
- Specific Design Features ... 301
 - Power Conversion Unit (PCU) Configuration 302
 - Vertical PCU .. 303
 - Submerged Generator and Electro-Magnetic Bearings 305
 - GT-MHR Helium Single Loop .. 306
 - Core Formed by Graphite Hexahedral Assemblies 308
 - Reactor and PCU Pressure Vessels ... 310
- Fuel Characteristics ... 311
- Safety Features ... 313
- Core Thermal and Neutronic Stability .. 313
- Chemical and Structural Stability ... 314
- Containment ... 314
- Active Heat Removal Systems .. 316
- Additional Information on Passive Heat Removal Systems 317
- Additional Unique Features ... 317
 - Helium Loop Water Ingress Protections 317
 - Helium Loop Air Ingress Protections 319
- Fuel Supply .. 320
Table of Contents

- Spent Fuel Management .. 320
- Construction and Manufacturing Issues 321
- Supply Chain Issues ... 322
- Economics .. 323
- Regulatory Status ... 324
- Conclusions ... 325
 Pros and Cons Analysis .. 326
 Prospects for Deployment .. 327

8 – LMR-type SMRs ... 329

LMR Background .. 329
- General Overview ... 329
- LMR Generic Issues ... 330

Toshiba 4S ... 333
- Company Overview .. 333
- Background ... 333
- Design Overview ... 334
- Target Applications .. 335
- Specific Design Features .. 336
 4S Multiple Thermal-hydraulic Loops 338
 Reactor Vessel Internals and Supporting Structures 339
 4S Core .. 341
 Double Walled Steam Generator ... 342
 Electro-Magnetic Pumps (EMPs) ... 343
 Reactivity Control by Mobile Reflector and Ultimate Shutdown Rod 345
 Mobile Reflector Assembly .. 346
- Passive Features .. 347
- Fuel Characteristics .. 349
- Fuel Supply ... 350
- Spent Fuel Management .. 351
- Construction and Manufacturing Issues 352
- Supply Chain Issues .. 352
- Economics .. 353
- Regulatory Status .. 354
 Regulatory Framework for Deployment of 4S in Galena, Alaska 354
- 4S Experimental and Validation Activities 356
- Additional Information on Sodium Liquid Metal as Core Coolant 357
- Conclusions ... 359
 Pros and Cons Analysis .. 359
 Prospects for Deployment .. 360

Hyperion Power Module ... 361
- Company Overview .. 361
- Background ... 362
- Design Overview ... 363
- Target Applications .. 364
- Design History ... 365
- Extra RV or Integrated Heat Exchangers 366
- Design Inconsistencies .. 367
- Different Configurations .. 370
- Most Current Functional Diagram 372
- Design Preliminary Computations .. 374
- Lead-Bismuth as Coolant ... 374
- Radioactive Coolant ... 375
- Transportability ... 375
- Reactor Vessel Internals .. 376
- Fuel Characteristics ... 377
- Control and Safety Features .. 378
- Decay Heat Removal .. 379
- Additional Unique Feature: Oxygen Control to Limit Corrosion 380
- Comparative Designs .. 380

© 2010 UxC
- Fuel Supply ... 384
- Spent Fuel Management ... 385
- Construction and Manufacturing Issues 385
- Supply Chain Issues .. 385
- Economics ... 386
- Regulatory Status ... 386
- Conclusions .. 387
 - Pros and Cons Analysis .. 388
 - Prospects for Deployment ... 389
GE-Hitachi PRISM .. 391
- Company Overview ... 391
- Background ... 392
- Design Overview .. 394
- Target and Possible Applications ... 396
- Specific Design Features ... 401
 - Primary and Secondary Sodium Loops Coupled to a "Steam-Loop" 401
 - Passive Features ... 403
 - Reactor Vessel Auxiliary Cooling System (RVACS) 404
 - Primary Sodium Loop Natural Circulation 406
 - PRISM Core ... 406
 - Containment .. 407
 - PRISM-based Power Station Configurations 409
 - Modularity and PRISM-based Station Footprint 410
 - Electro-Magnetic Pumps (EMP)s .. 411
 - Liquid-Metal-to-Water Heat Exchanger (Steam Generator) 411
 - Intermediate Heat Exchanger .. 412
- Fuel Characteristics ... 413
- Safety Features ... 413
- Advanced Recycling Center (ARC) and Spent Fuel Management 415
- Fuel Supply ... 416
- Construction and Manufacturing Issues 417
- Supply Chain Issues ... 417
- Economics .. 418
- Regulatory Status ... 418
- Additional Regulatory Aspects Related to Modular Design 420
- Conclusions ... 422
 - Pros and Cons Analysis .. 422
 - Prospects for Deployment .. 423

9 – Additional SMR Designs .. 425
Operating Designs .. 426
- CNP-300 .. 426
- Indian 220 MWe PHWR .. 428
- EGP-6 ... 429
LWR Designs ... 431
- CAREM .. 431
- ABV ... 433
- NIKA-70 .. 436
- RITM-200 ... 437
- RUTA-70 ... 438
- UNITERM .. 440
- VK-300 .. 441
- VKT-12 .. 443
- ELENA ... 444
- SAKHA-92 .. 445
- MRX .. 446
- NP-300 .. 447
- NHR-200 .. 448
- TRIGA Power System (TPS) .. 449
- RADIX ... 450
Table of Contents

HTR Designs .. 451
 • GTHTR .. 451
 • Energy Multiplier Module (EM²) .. 453
 • ANTARES .. 454
 • Adams Engine ... 455
 • MTSPNR (GREM) ... 456
LMR Designs .. 457
 • SVBR ... 457
 • ANGSTREM .. 460
 • BREST .. 461
 • ENHS .. 464
 • STAR ... 465
 • LSPR ... 467
Other Designs .. 468
 • Advanced Heavy Water Reactor (AHWR) .. 468
 • ARC-100 ... 469
 • RAPID ... 470
 • MARS .. 472
 • Fuji MSR ... 473
 • LFTR .. 474
 • ALLEGRO .. 475
 • Travelling Wave Reactor (TWR) .. 477
 • PEACER .. 478
 • Fixed Bed Nuclear Reactor (FBNR) .. 479
 • GEM*STAR .. 481
 • General Fusion ... 482

10 – Keys to SMR Success for Suppliers ... 483
 Understanding Customer Needs ... 483
 Finalizing Design and Technical Issues .. 483
 Overcoming Regulatory Hurdles .. 484
 • Emergency Planning ... 484
 • Probabilistic Risk Assessments ... 484
 • Operator Staffing Requirements ... 484
 • Security and Physical Protection ... 485
 • Aircraft Impact Issues ... 485
 • NRC Licensing Fees .. 485
 • Nuclear Liability Insurance .. 486
 • Decommissioning Funds .. 486
 Establishing Realistic, Detailed Cost Estimates ... 486
 Obtaining Adequate Financial Support .. 486
 • Perspectives from Venture Capitalists ... 487
 Anticipating Requirements for Construction & Manufacturing ... 488
 Developing a Robust Supply Chain .. 488
 Fully Understanding Operations & Maintenance Parameters ... 489
 Addressing Fuel Supply & Waste Management .. 489
 Summary ... 490

11 – Keys to SMR Success for Customers ... 491
 Overview of Potential SMR Customers ... 491
 Types of SMR Customers ... 494
 Customer Attractions to SMRs ... 494
 Non-Traditional Nuclear Power Applications ... 495
 Deploying SMRs in New Nuclear Countries .. 496
 • The Right Mix ... 497
 Conducive Political Situation .. 497
 Economic Means ... 497
 Appropriate Energy Requirements .. 498
 • Milestones and Infrastructure Issues .. 498
 • Implementing a New SMR-based Nuclear Power Program ... 501

8
List of Figures

Figure 1. U.S. Naval Propulsion Reactors ... 23
Figure 2. U.S. Army Small Reactors .. 24
Figure 3. Core Energy Repartition for Various Co-generation Configurations 34
Figure 4. Large vs. Small Reactor Construction Period Finance Drivers 45
Figure 5. The Carbon Factor and Competitiveness of SMRs: EPRI Comparative Costs in 2015 .. 46
Figure 6. Westinghouse IRIS ... 50
Figure 7. B&W mPower .. 51
Figure 8. NuScale Power Plant .. 52
Figure 9. KAERI SMART .. 52
Figure 10. OKBM KLT-40S ... 53
Figure 11. OKBM VBER-300 .. 54
Figure 12. South African PMBR Multi-Modular Concept .. 55
Figure 13. HTR-PM in China ... 56
Figure 14. General Atomics GT-MHR .. 57
Figure 15. Toshiba 4S .. 58
Figure 16. Hyperion Power Facility ... 58
Figure 17. GEH PRISM ... 59
Figure 18. Representation of IRIS 4-Unit Plant with 1,340 MWe 66
Figure 19. IRIS Integration with Desalination Plant .. 68
Figure 20. IRIS Integrated Primary Components Layout ... 70
Figure 21. Top-view Reactor Coolant Pumps and Steam Generators 71
Figure 22. Simplified Cross-Sectional View of IRIS RPV and RCP 72
Figure 23. IRIS Steam Generator ... 73
Figure 24. Pressurizer (PRZ) Integrated with the RPV Top Head 74
Figure 25. Containment Characteristics ... 76
Figure 26. IRIS Spent Fuel Pool Location .. 80
Figure 27. IRIS Equipment Prototypes at the SIET Testing Facility in Piacenza, Italy .. 85
Figure 28. B&W Nuclear Company Milestones ... 89
Figure 29. B&W Corporate Structure .. 90
Figure 30. mPower & NS “Otto Hahn” Reactor Conceptual Design Similarities 92
Figure 31. Otto Hahn Nuclear Reactor .. 93
Figure 32. mPower Lead Plant Schedule for Deployment by 2020 94
Figure 33. 4 x 125 MWe (500 MWe) mPower-based Power Station 96
Figure 34. Impact of Separation Heat Exchangers in Support of Process Heat Applications .. 98
Figure 35. Integral mPower RPV ... 99
Figure 36. mPower Design Simplified Functional Diagram 100
Figure 37. mPower Possible Steam Generator Configurations 102
Figure 38. mPower Bottom-RPV section and Reactor Coolant Pump Assembly 104
Figure 39. mPower Integral CRDMs and Electrical Connections 106
Figure 40. mPower Integral Pressurizer Internals .. 107
Figure 41. mPower Containment Building and Ancillary Structures 109
Figure 42. mPower Passive Decay Heat Removal System 110
Figure 43. 500 MWe mPower-based Nuclear Power Station 112
Figure 44. 4-module mPower Nuclear Power Station ... 113
Figure 45. mPower Spent and Fresh Fuel Storage Pool .. 114
Figure 46. B&W Broad Nuclear Components Manufacturing Capabilities 115
Figure 47. Consulting and Industrial Groups Interacting with NuScale Power 122
Figure 48. NuScale Design Milestones ... 123
Figure 49. NuScale Design Milestone Schedule ... 124
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>NuScale Single Module Nuclear & Turbine Islands</td>
<td>124</td>
</tr>
<tr>
<td>51</td>
<td>NuScale Design Possible Core Heat Energy Partitions</td>
<td>127</td>
</tr>
<tr>
<td>52</td>
<td>NuScale Single-module Core-to-Power Conversion Configuration</td>
<td>128</td>
</tr>
<tr>
<td>53</td>
<td>Multiple Pressure Boundaries & Possible Engineering Challenges for NuScale</td>
<td>130</td>
</tr>
<tr>
<td>54</td>
<td>NuScale Containment Technical Specifications</td>
<td>133</td>
</tr>
<tr>
<td>55</td>
<td>Carbon Steel Requirements for NuScale vs. AP1000 Containment Steel Liner</td>
<td>135</td>
</tr>
<tr>
<td>56</td>
<td>NuScale vs. AP1000: Forgings, Containment Steel, and Valves</td>
<td>135</td>
</tr>
<tr>
<td>57</td>
<td>Decay Heat Removal Scheme Based on Containment Sump Cooling</td>
<td>137</td>
</tr>
<tr>
<td>58</td>
<td>Decay Heat Removal Scheme Based on Steam Generators Cooling</td>
<td>139</td>
</tr>
<tr>
<td>59</td>
<td>Optimized Decay Heat Removal System via Steam Generators</td>
<td>140</td>
</tr>
<tr>
<td>60</td>
<td>Integrated RPV Technical Specifications</td>
<td>141</td>
</tr>
<tr>
<td>61</td>
<td>24-assemblies in NuScale 160 MWt Core</td>
<td>142</td>
</tr>
<tr>
<td>62</td>
<td>NuScale Refueling Process</td>
<td>143</td>
</tr>
<tr>
<td>63</td>
<td>12 Module NuScale Plant Configuration</td>
<td>145</td>
</tr>
<tr>
<td>64</td>
<td>Scaled-up NuScale Power Station</td>
<td>146</td>
</tr>
<tr>
<td>65</td>
<td>95,000 m² 12-Module NuScale Power Station</td>
<td>146</td>
</tr>
<tr>
<td>66</td>
<td>Symmetric Modules Grade-referenced Elevations for NuScale Power Station</td>
<td>147</td>
</tr>
<tr>
<td>67</td>
<td>Defense-in-Depth and Engineered Barriers for Radioactivity Escape</td>
<td>150</td>
</tr>
<tr>
<td>68</td>
<td>Multi-Module NuScale Control Room</td>
<td>151</td>
</tr>
<tr>
<td>69</td>
<td>NuScale Plant Spent Fuel Pool</td>
<td>153</td>
</tr>
<tr>
<td>70</td>
<td>NuScale Thermal Hydraulic Facility</td>
<td>154</td>
</tr>
<tr>
<td>71</td>
<td>SMART Design Development Milestones</td>
<td>162</td>
</tr>
<tr>
<td>72</td>
<td>SMART Test & Verification Construction Milestones</td>
<td>163</td>
</tr>
<tr>
<td>73</td>
<td>SMART with Desalination Plant Configuration</td>
<td>164</td>
</tr>
<tr>
<td>74</td>
<td>Typical PWR configuration vs. SMART Integrated Systems</td>
<td>166</td>
</tr>
<tr>
<td>75</td>
<td>Generalized SMART Enabled Process Heat Configurations</td>
<td>166</td>
</tr>
<tr>
<td>76</td>
<td>Cross-sectional View of SMART Integrated RPV, and Coolant Flow Paths</td>
<td>167</td>
</tr>
<tr>
<td>77</td>
<td>SMART Helically Coiled SG Cassettes (SGC) & Full-Scale Mockup of SGC</td>
<td>169</td>
</tr>
<tr>
<td>78</td>
<td>SMART 2 meter Active Height Fuel Assembly</td>
<td>170</td>
</tr>
<tr>
<td>79</td>
<td>SMART Inherent and Engineered Safety Features</td>
<td>173</td>
</tr>
<tr>
<td>80</td>
<td>General SMART Buildings Layout</td>
<td>174</td>
</tr>
<tr>
<td>81</td>
<td>Digital Instrumentation & Control Room</td>
<td>175</td>
</tr>
<tr>
<td>82</td>
<td>SMART vs. Fossil Fuel Plants Generation Costs</td>
<td>178</td>
</tr>
<tr>
<td>83</td>
<td>SMART Advantages as Viewed by KAERI</td>
<td>179</td>
</tr>
<tr>
<td>84</td>
<td>VBER-300 "Unitized" Reactor System Main Equipment Arrangement</td>
<td>186</td>
</tr>
<tr>
<td>85</td>
<td>VBER-300 Unitized Configurations for Different Power Outputs</td>
<td>187</td>
</tr>
<tr>
<td>86</td>
<td>VBER-300 Electric and District Heating Applications</td>
<td>188</td>
</tr>
<tr>
<td>87</td>
<td>VBER-300 Core Energy Repartition for Process Heat Configurations</td>
<td>190</td>
</tr>
<tr>
<td>88</td>
<td>VBER-300 4-loop Unitized Reactor System with Dimensions</td>
<td>192</td>
</tr>
<tr>
<td>89</td>
<td>VBER-300 Primary Thermal-Hydraulic Pathways</td>
<td>193</td>
</tr>
<tr>
<td>90</td>
<td>Land-Based VBER-300 Station</td>
<td>194</td>
</tr>
<tr>
<td>91</td>
<td>VBER-300 Nuclear Island Equipment and Containment</td>
<td>195</td>
</tr>
<tr>
<td>92</td>
<td>VBER-300 Advanced Fuel Sub-Assembly and Core</td>
<td>196</td>
</tr>
<tr>
<td>93</td>
<td>OKBM/IAEA Rendering of a Floating Power Unit (FPU)</td>
<td>200</td>
</tr>
<tr>
<td>94</td>
<td>Barge Configuration Plant Layout</td>
<td>202</td>
</tr>
<tr>
<td>95</td>
<td>OKBM-based Reactors with Barge Configurations</td>
<td>203</td>
</tr>
<tr>
<td>96</td>
<td>FPU Based on Three Stationary Floating Platforms</td>
<td>205</td>
</tr>
<tr>
<td>97</td>
<td>FPU Barge Based on OKBM Nuclear Reactor Systems</td>
<td>207</td>
</tr>
<tr>
<td>98</td>
<td>OKBM Manufacturing Facility</td>
<td>208</td>
</tr>
<tr>
<td>99</td>
<td>Examples of OKBM Special Component Manufacturing Capability</td>
<td>208</td>
</tr>
<tr>
<td>100</td>
<td>KLT-40S Barge-type FPU</td>
<td>215</td>
</tr>
<tr>
<td>101</td>
<td>KLT-40S Core Energy Repartition for Process Heat Configurations</td>
<td>218</td>
</tr>
</tbody>
</table>
Figure 102. Nuclear Island Cross-Sectional View of KLT-40S Power Station ... 218
Figure 103. Land-Based KLT-40S Reactor System .. 219
Figure 104. 3-Dimensional View of KLT-40S Top Reactor Systems & Components 220
Figure 105. KLT-40S Reactor Pressure Vessel Internals .. 221
Figure 106. KLT-40S Cross-Sectional View... 222
Figure 107. Cross-Sectional View of KLT-40S RPV and RCP Systems ... 223
Figure 108. KLT-40S Steam Generator Assembly ... 224
Figure 109. Model of Complete KLT-40S Reactor Systems ... 225
Figure 110. KLT-40S FPU Containment ... 227
Figure 111. KLT-40S Barge Configuration Fuel Unloading/Loading Operations 230
Figure 112. Steam Generator Tube System Manufactured at OKBM Facilities 231
Figure 113. Generic High Temperature Reactor Concept ... 235
Figure 114. Westinghouse Electric Corporation-led Technology Consortium .. 238
Figure 115. AVR in Jülich, Germany .. 240
Figure 116. PBMR Demonstration Plant Representation .. 242
Figure 117. Uranium Fuel Pebbles used in PBMRs .. 243
Figure 118. PBMR Helium Coolant Loops .. 244
Figure 119. PBMR Module Estimated Footprint ... 245
Figure 120. PBMR 4-module Plant as Envisioned in South Africa .. 245
Figure 121. Two-Unit Modular PBMR Top View .. 246
Figure 122. Examples of PBMR High Temperature Applications .. 247
Figure 123. PBMR Product/Application Development Path .. 248
Figure 124. Low-Temperature Simplified PBMR .. 249
Figure 125. High Temperature Reactor (HTR) with Steam Generator Module 251
Figure 126. Helium Coolant Loop Heat and Mass Balancing Plant .. 252
Figure 127. PBMR Co-Generation and Process Heat Configuration .. 253
Figure 128. PBMR Enabled Process Heat Configurations ... 253
Figure 129. PBMR Passive Cooling Paths .. 254
Figure 130. 250 MWt PBMR Core Characteristics ... 256
Figure 131. PBMR Core Shape ... 256
Figure 132. PBMR Control Rods and Control Rod Drive Mechanisms ... 257
Figure 133. PBMR Fuel Pebbles Manufacturing Steps .. 258
Figure 134. PBMR Fuel Supply Plans .. 258
Figure 135. Full-scale Helium Test Facility at Pelindaba ... 259
Figure 136. Heat-Transfer Tests Conducted at Pelindaba .. 260
Figure 137. PBMR Demonstration Power Plant RPV Materials .. 261
Figure 138. HTR-PM Investors Structure .. 267
Figure 139. HTR-10 INET Testing Facility .. 268
Figure 140. HTR-PM Decay-heat Heat Exchangers and UHS .. 270
Figure 141. HTR-PM Plant Overview .. 272
Figure 142. HTR-PM Indirect-Cycle Version ... 274
Figure 143. HTR-PM Gas-Turbine Version .. 275
Figure 144. HTR-PM Primary and Secondary Loops ... 276
Figure 145. HTR-PM Possible Process Heat Applications .. 276
Figure 146. HTR-PM RPV, SGs, and Connecting Duct Pressure Boundary .. 277
Figure 147. Top Cross-sectional View of HTR-10 Steam Generator ... 278
Figure 148. HTR-PM 210 MWe Turbine Unit per 2 x 250 MWt Reactor Units 279
Figure 149. HTR-PM Two-unit Reactor Building and Turbine Island .. 280
Figure 150. HTR-PM Core Cross-Sectional View ... 281
Figure 151. HTR-PM TRISO Coated Particles and Fuel Spheres .. 282
Figure 152. ATWS Test for HTR-PM .. 285
Figure 153. HTR-PM Reflector Blocks and RPV Internals ... 285
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 154.</td>
<td>HTR-PM RPV and Steam Generator</td>
<td>286</td>
</tr>
<tr>
<td>Figure 155.</td>
<td>HTR-PM Costs per Module over Time</td>
<td>288</td>
</tr>
<tr>
<td>Figure 156.</td>
<td>GT-MHR U.S. and European Technology Basis</td>
<td>294</td>
</tr>
<tr>
<td>Figure 157.</td>
<td>GT-MHR Project Milestones</td>
<td>295</td>
</tr>
<tr>
<td>Figure 158.</td>
<td>GT-MHR 600 MWt, 286 MWe Module</td>
<td>296</td>
</tr>
<tr>
<td>Figure 159.</td>
<td>MHR Process Heat Application for the Production of Hydrogen</td>
<td>299</td>
</tr>
<tr>
<td>Figure 160.</td>
<td>MHR Core Energy Repartitions for Process Heat Applications</td>
<td>300</td>
</tr>
<tr>
<td>Figure 161.</td>
<td>Non-Electric GT-MHR Applications</td>
<td>301</td>
</tr>
<tr>
<td>Figure 162.</td>
<td>PCU Direct Coupling with Modular Helium Reactor (MHR)</td>
<td>302</td>
</tr>
<tr>
<td>Figure 163.</td>
<td>PCU Alternate Configurations</td>
<td>304</td>
</tr>
<tr>
<td>Figure 164.</td>
<td>GT-MHR Functional Diagram</td>
<td>307</td>
</tr>
<tr>
<td>Figure 165.</td>
<td>Enhanced Load-follower Characteristics by means of By-pass Valves</td>
<td>308</td>
</tr>
<tr>
<td>Figure 166.</td>
<td>GT-MHR Core Fuel-, Reflector-, and Control Rod Graphite Assemblies</td>
<td>309</td>
</tr>
<tr>
<td>Figure 167.</td>
<td>GT-MHR Fuel Assemblies Configuration (Core Top View)</td>
<td>309</td>
</tr>
<tr>
<td>Figure 168.</td>
<td>GT-MHR and H2-MHE Pressure Vessels Materials</td>
<td>311</td>
</tr>
<tr>
<td>Figure 169.</td>
<td>MHR TRISO Fuel and Fuel Compacts</td>
<td>312</td>
</tr>
<tr>
<td>Figure 170.</td>
<td>Fertile and Fissile TRISO Kernel</td>
<td>313</td>
</tr>
<tr>
<td>Figure 171.</td>
<td>GT-MHR Containment Design and Newer Aircraft Impact Standards</td>
<td>315</td>
</tr>
<tr>
<td>Figure 172.</td>
<td>GT-MHR Passive Reactor Cavity Cooling System (RCCS)</td>
<td>317</td>
</tr>
<tr>
<td>Figure 173.</td>
<td>Multi-module GT-MHR Power Station</td>
<td>321</td>
</tr>
<tr>
<td>Figure 174.</td>
<td>GA-OKBM Turbo-Machinery Design Close to Industrial Gas Turbines</td>
<td>322</td>
</tr>
<tr>
<td>Figure 175.</td>
<td>Small-Scale Testing of PCU Components</td>
<td>323</td>
</tr>
<tr>
<td>Figure 176.</td>
<td>Small-scale Testing of PCU Components</td>
<td>324</td>
</tr>
<tr>
<td>Figure 177.</td>
<td>Generic Sodium-Cooled Reactor Concept</td>
<td>329</td>
</tr>
<tr>
<td>Figure 178.</td>
<td>Generic Lead-Cooled Reactor Concept</td>
<td>330</td>
</tr>
<tr>
<td>Figure 179.</td>
<td>4S Plant Representation</td>
<td>334</td>
</tr>
<tr>
<td>Figure 180.</td>
<td>4S Temperature-Dependent Process Heat Configurations</td>
<td>337</td>
</tr>
<tr>
<td>Figure 181.</td>
<td>4S Separation Heat Exchangers for Process-heat Applications</td>
<td>338</td>
</tr>
<tr>
<td>Figure 182.</td>
<td>4S Functional Diagram</td>
<td>339</td>
</tr>
<tr>
<td>Figure 183.</td>
<td>4S Primary Coolant Flow Direction</td>
<td>340</td>
</tr>
<tr>
<td>Figure 184.</td>
<td>4S Reactor Vessel Components & Supporting Structures</td>
<td>342</td>
</tr>
<tr>
<td>Figure 185.</td>
<td>4S Active Core and Mobile Reflector Configurations</td>
<td>343</td>
</tr>
<tr>
<td>Figure 186.</td>
<td>4S 3rd Loop: Steam-generator, Turbine, Condenser</td>
<td>344</td>
</tr>
<tr>
<td>Figure 187.</td>
<td>4S Double Walled Steam Generator Tube</td>
<td>344</td>
</tr>
<tr>
<td>Figure 188.</td>
<td>4S Electro-Magnetic Pumps for Active Primary Sodium Circulation</td>
<td>345</td>
</tr>
<tr>
<td>Figure 189.</td>
<td>4S Mobile Reflector Assembly and Components</td>
<td>347</td>
</tr>
<tr>
<td>Figure 190.</td>
<td>4S Fuel Assembly Configuration</td>
<td>349</td>
</tr>
<tr>
<td>Figure 191.</td>
<td>4S Modularity</td>
<td>351</td>
</tr>
<tr>
<td>Figure 192.</td>
<td>4S Module Transport</td>
<td>352</td>
</tr>
<tr>
<td>Figure 193.</td>
<td>4S Electro-Magnetic Pump Sample</td>
<td>353</td>
</tr>
<tr>
<td>Figure 194.</td>
<td>4S NRC Licensing Schedule</td>
<td>354</td>
</tr>
<tr>
<td>Figure 195.</td>
<td>4S Tested Systems and Test Facilities</td>
<td>356</td>
</tr>
<tr>
<td>Figure 196.</td>
<td>Hyperion Power Reactor Concept</td>
<td>361</td>
</tr>
<tr>
<td>Figure 197.</td>
<td>Hyperion Power Module Plant Representation</td>
<td>363</td>
</tr>
<tr>
<td>Figure 198.</td>
<td>Depiction of HPM Deployed for Oil Sands Extraction</td>
<td>364</td>
</tr>
<tr>
<td>Figure 199.</td>
<td>HPM Balance of Plant Configuration as Presented in 2010</td>
<td>366</td>
</tr>
<tr>
<td>Figure 200.</td>
<td>HPM and Basic Balance of Plant Configuration</td>
<td>368</td>
</tr>
<tr>
<td>Figure 201.</td>
<td>HPM Dimensional Data</td>
<td>369</td>
</tr>
<tr>
<td>Figure 202.</td>
<td>Extra Containment HPM Coupling with Power Conversion Heat Exchangers</td>
<td>370</td>
</tr>
<tr>
<td>Figure 203.</td>
<td>HPM Direct Thermal Coupling with Steam Generator</td>
<td>371</td>
</tr>
<tr>
<td>Figure 204.</td>
<td>HPM Simplified Functional Diagram</td>
<td>372</td>
</tr>
<tr>
<td>Figure 205.</td>
<td>HPM Functional Diagram as Submitted to NRC</td>
<td>372</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>206</td>
<td>HPM Core Top-view</td>
<td>378</td>
</tr>
<tr>
<td>207</td>
<td>HPM Fuel Sub-Assembly and Dimensional Inconsistency</td>
<td>378</td>
</tr>
<tr>
<td>208</td>
<td>HPM Version Based on Patent Application No. 12/613,362</td>
<td>381</td>
</tr>
<tr>
<td>209</td>
<td>25 MWe HPM core Versus 70 MWe SVBR Core Dimensions</td>
<td>383</td>
</tr>
<tr>
<td>210</td>
<td>HPM vs. SVBR vs. 4S Dimensions and Performance Comparison</td>
<td>384</td>
</tr>
<tr>
<td>211</td>
<td>PRISM Design Evolutions</td>
<td>394</td>
</tr>
<tr>
<td>212</td>
<td>PRISM Power Block Representation</td>
<td>395</td>
</tr>
<tr>
<td>213</td>
<td>PRISM Temperature-Dependent Process Heat Configurations</td>
<td>398</td>
</tr>
<tr>
<td>214</td>
<td>Separation Heat Exchangers Possible Configurations to Support Process Heat Applications</td>
<td>399</td>
</tr>
<tr>
<td>215</td>
<td>PRISM Primary-loop and Reactor Vessel Auxiliary Cooling System</td>
<td>401</td>
</tr>
<tr>
<td>216</td>
<td>PRISM Unit Functional Diagram</td>
<td>402</td>
</tr>
<tr>
<td>217</td>
<td>PRISM Single Unit 3D Model</td>
<td>403</td>
</tr>
<tr>
<td>218</td>
<td>Passive RVACS in PRISM</td>
<td>404</td>
</tr>
<tr>
<td>219</td>
<td>PRISM RVACS Enhanced Heat Transfer Features</td>
<td>405</td>
</tr>
<tr>
<td>221</td>
<td>PRISM Core Configurations</td>
<td>407</td>
</tr>
<tr>
<td>222</td>
<td>PRISM Containment Structures</td>
<td>408</td>
</tr>
<tr>
<td>223</td>
<td>PRISM Power Block and Turbine Island</td>
<td>409</td>
</tr>
<tr>
<td>224</td>
<td>Large PRISM Based Power Station (> 1.8 GWe)</td>
<td>410</td>
</tr>
<tr>
<td>225</td>
<td>ALMR vs. PRISM Footprint</td>
<td>411</td>
</tr>
<tr>
<td>226</td>
<td>PRISM-based Helical Coil Steam Generator</td>
<td>412</td>
</tr>
<tr>
<td>227</td>
<td>PRISM Intermediate Heat Exchanger (IHX) - Pool Design Configuration</td>
<td>413</td>
</tr>
<tr>
<td>228</td>
<td>PRISM Advanced Recycling Center Configuration</td>
<td>415</td>
</tr>
<tr>
<td>229</td>
<td>Rendered 3D Model of PRISM-ARC Integrated Nuclear Station</td>
<td>416</td>
</tr>
<tr>
<td>230</td>
<td>ALMR/PRISM Licensing Activities</td>
<td>420</td>
</tr>
<tr>
<td>231</td>
<td>PRISM Prototype Plant Design, Construction, and Testing Plan</td>
<td>421</td>
</tr>
<tr>
<td>232</td>
<td>CNP-300 at Qinshan I-1 NPP</td>
<td>426</td>
</tr>
<tr>
<td>233</td>
<td>220 MWe PHWRs at Rajasthan NPP</td>
<td>428</td>
</tr>
<tr>
<td>234</td>
<td>EGP-6 Units at Bilibino NPP</td>
<td>430</td>
</tr>
<tr>
<td>235</td>
<td>CAREM Design</td>
<td>432</td>
</tr>
<tr>
<td>236</td>
<td>CAREM Nuclear Plant Depiction</td>
<td>433</td>
</tr>
<tr>
<td>237</td>
<td>ABV-6 Reactor Core</td>
<td>434</td>
</tr>
<tr>
<td>238</td>
<td>NIK-70 Reactor Core</td>
<td>436</td>
</tr>
<tr>
<td>239</td>
<td>RITM-200 Reactor Core</td>
<td>437</td>
</tr>
<tr>
<td>240</td>
<td>RUTA-70 Reactor Schematic</td>
<td>439</td>
</tr>
<tr>
<td>241</td>
<td>UNITERM Reactor Design</td>
<td>440</td>
</tr>
<tr>
<td>242</td>
<td>VK-300 Power Plant Design</td>
<td>441</td>
</tr>
<tr>
<td>243</td>
<td>SAKHA-92 Reactor Overview</td>
<td>445</td>
</tr>
<tr>
<td>244</td>
<td>MRX Reactor Overview</td>
<td>446</td>
</tr>
<tr>
<td>245</td>
<td>NP-300 Reactor Overview</td>
<td>447</td>
</tr>
<tr>
<td>246</td>
<td>NHR-200 Reactor Schematic</td>
<td>448</td>
</tr>
<tr>
<td>247</td>
<td>TPS Reactor Schematic</td>
<td>449</td>
</tr>
<tr>
<td>248</td>
<td>RADIX Reactor Core</td>
<td>450</td>
</tr>
<tr>
<td>249</td>
<td>HTTR at Oarai, Japan</td>
<td>451</td>
</tr>
<tr>
<td>250</td>
<td>GTHTR-300 Plant Layout</td>
<td>452</td>
</tr>
<tr>
<td>251</td>
<td>EM² Plant Layout</td>
<td>453</td>
</tr>
<tr>
<td>252</td>
<td>ANTaRES Reactor Overview</td>
<td>454</td>
</tr>
<tr>
<td>253</td>
<td>Adams Engine Process Flow Diagram Reactor</td>
<td>455</td>
</tr>
<tr>
<td>254</td>
<td>MTSNPR (GREM) Depiction on Towing Vehicle</td>
<td>456</td>
</tr>
<tr>
<td>255</td>
<td>SVBR-100 Reactor</td>
<td>458</td>
</tr>
<tr>
<td>256</td>
<td>ANGSTREM NPP Depiction</td>
<td>460</td>
</tr>
<tr>
<td>257</td>
<td>BREST Reactor</td>
<td>462</td>
</tr>
</tbody>
</table>
List of Figures

Figure 258. ENHS Reactor Schematic ... 464
Figure 259. STAR-LM Reactor Schematic .. 466
Figure 260. LSPR Reactor Overview ... 467
Figure 261. AHWR Power Plant Layout .. 468
Figure 262. ARC-100 Reactor Schematic ... 469
Figure 263. RAPID Power Plant Overview ... 471
Figure 264. MARS Power Plant Schematic .. 472
Figure 265. Fuji MSR 200 Power Plant Overview .. 473
Figure 266. LFTR Power Plant Overview .. 474
Figure 267. ALLEGRO Reactor Overview ... 475
Figure 268. TWR Reactor Schematic ... 477
Figure 269. PEACER-300 Reactor Depiction .. 478
Figure 270. FBNR Reactor Schematic ... 479
Figure 271. GEM*STAR Reactor Depiction ... 481
Figure 272. Fusion Generator Demonstrator .. 482
Figure 273. Keys to Success for SMR Developers ... 490
Figure 274. World Map of Potential New Nuclear Countries 496
Figure 275. Milestones for Implementing a New Nuclear Program 499
Figure 276. UxC World Detailed Reactor & Nuclear Capacity Forecast, 2008-2030 ... 510
List of Tables

Table 1. Current 12 Leading Global SMR Designs ... 21
Table 2. U.S. Army Small Reactors in 1960s & 1970s .. 24
Table 3. SMR Economics Viewed on Basis of Main NPP Cost Parameters ... 41
Table 4. Rough Construction Cost Estimates for 12 Leading SMR Designs ... 43
Table 5. SMR vs. LWR Plant Staffing Requirements .. 44
Table 6. SMR vs. LWR Lifecycle Economics .. 44
Table 7. Current 12 Leading Global SMR Designs ... 49
Table 8. IRIS Consortium Members ... 64
Table 9. IRIS Design Overview .. 66
Table 10. IRIS Desalination Coupling Economic & Technical Data .. 69
Table 11. IRIS Fuel Data ... 79
Table 12. mPower Design Overview .. 96
Table 13. mPower Core Characteristics .. 106
Table 14. NuScale Design Overview .. 125
Table 15. SMART Design Overview .. 164
Table 16. VBER-300 Design Overview .. 186
Table 17. VBER and KLT Reactor System Versions for FPU Applications ... 201
Table 18. VBER-300 Economic Data .. 209
Table 19. KLT-40S Design Overview .. 215
Table 20. VBER and KLT Reactor System Versions for FPU Applications ... 216
Table 21. PBMR Design History ... 239
Table 22. High-Temperature PBMR Design Overview .. 242
Table 23. Low-Temperature PBMR Design Overview ... 249
Table 24. HTR-PM Design Overview .. 273
Table 25. GT-MHR Design Overview .. 297
Table 26. GT-MHR Capital Costs ... 324
Table 27. 4S Design Overview .. 335
Table 28. 4S 50 MWe Version Fuel and Technical Specifications ... 350
Table 29. Sodium-Cooled Reactors Startup and Permanent Shutdown Dates ... 358
Table 30. HPM Design Overview .. 364
Table 31. HPM Technical Specifications .. 376
Table 32. PRISM Design Overview .. 395
Table 33. CNP-300 Design Overview .. 426
Table 34. Indian 220 MWe PHWR Design Overview .. 428
Table 35. EGP-6 Design Overview .. 429
Table 36. CAREM-25 Design Overview .. 431
Table 37. ABV Design Overviews ... 433
Table 38. NIKA-70 Design Overview ... 436
Table 39. NIKA-70 Design Overview .. 437
Table 40. RUTA-70 Design Overview ... 438
Table 41. UNITERM Design Overview ... 440
Table 42. VK-300 Design Overview ... 441
Table 43. VKT-12 Design Overview .. 443
Table 44. ELENA Design Overview .. 444
Table 45. SAKHA-92 Design Overview ... 445
Table 46. MRX Design Overview ... 446
Table 47. NP-300 Design Overview .. 447
Table 48. NHR-200 Design Overview .. 448
Table 49. TPS Design Overview .. 449
Table 50. RADIX Design Overview ...450
Table 51. GTHTR Overview ...451
Table 52. EM² Design Overview ..453
Table 53. ANTARES Design Overview ..454
Table 54. Adams Engine Design Overview ...455
Table 55. MTSPNR Design Overview ..456
Table 56. SVBR-100 Design Overview ...457
Table 57. ANGSTREM Design Overview ...460
Table 58. BREST Design Overview ..461
Table 59. ENHS Design Overview ...464
Table 60. STAR-LM Design Overview ...465
Table 61. LSPR Design Overview ..467
Table 62. AHWR Design Overview ...468
Table 63. ARC-100 Design Overview ..469
Table 64. RAPID Design Overview ...470
Table 65. MARS Design Overview ...472
Table 66. Fuji MSR Design Overview ...473
Table 67. MSR/LFTR Design Overview ..474
Table 68. ALLEGRO Design Overview ..475
Table 69. TWR Design Overview ...477
Table 70. PEACER-300 Design Overview ...478
Table 71. FBNR Design Overview ...479
Table 72. GEM*STAR Design Overview ...481
Table 73. General Fusion Design Overview ..482
Table 74. List of Potential SMR Projects Around the World492
Table 75. Potential New Nuclear Countries by Region497
Table 76. Infrastructure Issues for New Nuclear Power Program Development ...500
Table 77. UxC Forecast Cases for 12 Leading SMR Design Deployments515
Table 78. Comparative Data for 12 Leading SMR Designs518
Table 79. Pros & Cons for 12 Leading SMR Designs ..519
1 – Introduction & Overview

Small Modular Reactors or SMRs, producing between 10 MWe and 300 MWe, are not a new idea. The first ever nuclear reactors built to produce electricity were of the “small” variety. Even while the majority of the nuclear industry turned towards larger and larger reactor designs, there have always been some strong believers in the smaller designs as well. However, in the past several years, SMRs have gained tremendous attention and renewed energy in the nuclear power world, and this sector has emerged as an important new element of the global nuclear renaissance. For some companies, the SMR offers a brand new opportunity to engage with nuclear power, whereas others see the SMR as a response to the challenges that plague larger reactor designs. Of course, the reactor market is not a “zero-sum game,” and there is room for both large and small reactors in this world. SMRs may in fact provide unique benefits that no other reactor concept can offer. Still, the SMR sector is much less developed than the traditional reactor market.

Although few actual projects for small reactor deployment exist today, many SMR designs are being proposed by both established as well as new, startup nuclear power companies. There are many reasons for this revival of the small reactor concept, especially of the factory-assembled, modular variety; however, there are also a number of unique hurdles for SMRs. The development of a new, emerging SMR industry brings up a number of questions, including:

- What are the primary drivers pushing SMRs forward?
- What are the challenges to SMR development, and how can these be overcome?
- Which companies and designs present the most promising options within the SMR market, and why?
- Who will build these SMRs and where?
- Is the SMR concept viable in the long-term?

This new UxC comprehensive special report responds to these numerous questions while providing an all-inclusive SMR guide for any interested party. Ultimately, this report’s objective is to offer technical, economic, and other commercial assessments of each of the SMR designs being developed in the world today. In addition, the report provides an in-depth discussion of the broader issues impacting SMRs, such as the keys to successful deployment for SMRs, comparisons with larger reactor technologies, specific applications for SMRs, and the broader issues facing potential customers for SMRs.

Based on our extensive research, UxC’s SMRA report is meant as an independent, unbiased assessment of all the likely SMR technologies as well as to provide unique perspectives on the overall small reactor sector. As such, the report does not choose “winners & losers” and leaves it to the reader to make conclusions from our analysis.
Target Audience

The SMR market is still evolving. To our knowledge, no independent comparative analyses of the competing designs exist, and this report aims to fill this information gap. Potential uses for this study include:

- Nations considering a small reactor-based nuclear power program can use this report to evaluate the global offering of SMRs and to better understand the unique issues presented by SMR development.
- Electric power utilities looking to build or expand nuclear capacity may use this report when considering whether the option to go with an SMR is the better fit.
- For those in the financial community considering investing in nuclear power, this report presents crucial perspectives on the overall prospects for SMRs as well as insights on which companies may fare better in the SMR race.
- Manufacturing and supply chain companies interested in expanding their customer base through SMR projects can gain new insights.
- Nuclear fuel suppliers eager for a new customer base from SMRs will be better informed.
- Government agencies, regulatory bodies, trade associations, and research organizations can become more educated on SMRs.

Qualifying Statements

At the outset, it is important to highlight the limitations inherent in this type of study and approaches used by UxC to handle them. First, as indicated above, the primary purpose of this report is to provide new and unique perspectives on the SMR market. This is first and foremost an analytical report, as opposed to some of the broader public reports on this same topic. As such, this report is not meant to duplicate the expansive work done by organizations like the IAEA, DOE, NRC, ANS, and others, who fill important roles in promoting or describing SMR technologies.

Secondly, UxC made a decision when beginning this project to base the analysis in this report on public data, as opposed to requesting information from the various vendors of SMR designs. The primary reason for this has been to allow UxC to remain independent, unbiased, and fair, since opening the door to direct input by the SMR vendors necessarily would lead to variations in the depth of coverage of designs due to the different amount and type of information that would be made available by each company/organization. Some SMR designers may choose to be very forthcoming with us, while others may decide to not interact at all. To avoid this discrepancy, we decided to go with public information, which for most designs is still extremely rich in content and technical depth – especially through such documents as filings with the U.S. Nuclear Regulatory Commission (NRC).
As described already, the intent of this SMRA report is to provide thorough and critical analysis. In doing so, the purpose is not to diminish any company or organization’s efforts in deploying SMRs, but rather to highlight areas that may need further work or analysis. Still, given UxC’s position as independent consultancy, we see no reason to “hold our punches” or not point out clear discrepancies or issues with specific SMR designs when we see them.

Finally, we acknowledge at the outset that certain answers to questions on SMRs may not be covered even in the 500+ pages in this report. In some instances, information or analysis has been withheld purposefully to allow for an even level of coverage of the different SMR designs. In addition, given the newness of the market and the fact that it is continuously evolving, many questions remain unanswered, and even with our extensive efforts in researching and ferreting out information on different SMRs, there are still a number of open items. However, a major purpose of this report is to provide a frame of reference by which information that becomes subsequently available can be evaluated and incorporated into understanding the small reactor market and potential going forward.

Thus, while UxC’s Small Modular Reactor Assessments (SMRA) special report may be seen as a groundbreaking study on this rapidly developing SMR market, we are confident that this report is only assessing the first chapter in the new history of this industry. UxC has dedicated significant resources, time, and energy into this study over the past year, relying on a broad network of experts in all of the disciplines required for these types of full spectrum reactor assessments. We are developing further in-depth analyses on selected topics for these designs, as well as ranking methodologies for future comparisons among various designs. Given the depth of knowledge in the company on SMRs, we stand ready to provide even more detailed assessments on SMR designs in the future – either through updates to this public report or on an individual client basis.
Structure of Report

In order to best address the points identified above, this report has been organized in three main parts. The first provides an overview and introduction to the overall SMR market. The second analyzes each of the 12 selected SMR designs in detail and offers UxC’s independent assessments of the pros and cons of each as well as their prospects for deployment. The third part of this report looks at the next steps for SMR deployment from both a supplier and customer perspective and rounds out the discussion with broader conclusions about the future of the SMR market.

In addition to this Chapter 1 – Introduction & Overview, individual chapters in each of these parts are included as follows:

- **Part 1: SMR Market Overview**

 Chapter 2 – SMR’s Past and Present provides the historical context for SMRs and introduces the main reasons for the more recent resurgence of interest in SMRs.

 Chapter 3 – Advantages and Challenges for SMRs reviews the main positive and negative aspects of SMRs in general (without specifics on different designs).

 Chapter 4 – SMR Economics analyzes the economic case for SMRs and how their costs stack up with larger nuclear power plants.

- **Part 2: Individual SMR Design Evaluations**

 Chapter 5 – SMR Detailed Assessments Overview provides the introduction to UxC’s analysis of the selected 12 leading SMRs extensively covered in this report. The list of the selected SMR designs is shown in Table 1 (below).

<table>
<thead>
<tr>
<th>Design</th>
<th>Company</th>
<th>Country</th>
<th>Type</th>
<th>MWe (net)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRIS</td>
<td>Westinghouse</td>
<td>U.S.</td>
<td>PWR</td>
<td>335</td>
</tr>
<tr>
<td>mPower</td>
<td>Babcock & Wilcox</td>
<td>U.S.</td>
<td>PWR</td>
<td>125</td>
</tr>
<tr>
<td>NuScale</td>
<td>NuScale Power Inc.</td>
<td>U.S.</td>
<td>PWR</td>
<td>45</td>
</tr>
<tr>
<td>SMART</td>
<td>KAERI</td>
<td>South Korea</td>
<td>PWR</td>
<td>100</td>
</tr>
<tr>
<td>KLT-40S</td>
<td>OKBM Afrikantov</td>
<td>Russia</td>
<td>PWR</td>
<td>35</td>
</tr>
<tr>
<td>VBER-300</td>
<td>OKBM Afrikantov</td>
<td>Russia</td>
<td>PWR</td>
<td>295</td>
</tr>
<tr>
<td>PBMR</td>
<td>PBMR (Pty) Ltd.</td>
<td>South Africa</td>
<td>HTR</td>
<td>165</td>
</tr>
<tr>
<td>HTR-PM</td>
<td>Tsinghua INET & Huaneng</td>
<td>China</td>
<td>HTR</td>
<td>210</td>
</tr>
<tr>
<td>GT-MHR</td>
<td>General Atomic</td>
<td>U.S.</td>
<td>HTR</td>
<td>286</td>
</tr>
<tr>
<td>4S</td>
<td>Toshiba</td>
<td>Japan</td>
<td>LMR</td>
<td>10</td>
</tr>
<tr>
<td>HPM</td>
<td>Hyperion Power Generation</td>
<td>U.S.</td>
<td>LMR</td>
<td>25</td>
</tr>
<tr>
<td>PRISM</td>
<td>General Electric-Hitachi</td>
<td>U.S.</td>
<td>LMR</td>
<td>311</td>
</tr>
</tbody>
</table>

Chapter 6 – PWR-type SMRs includes in-depth analysis (20-40 pages per design) of the six leading SMRs that use Pressurized Water Reactor (PWR) technologies.
Chapter 7 – **HTR-type SMRs** includes in-depth analysis (20-40 pages per design) of the three leading SMRs that use High Temperature Reactor (HTR) technologies.

Chapter 8 – **LMR-type SMRs** includes in-depth analysis (20-40 pages per design) of the three leading SMRs that use Liquid Metal Reactor (LMR) technologies.

Since there are many more than just 12 SMR designs being considered around the world, **Chapter 9 – Additional SMR Designs** includes descriptions and basic analysis of over 40 additional SMRs beyond the leading designs.

- **Part 3: Keys to SMR Deployment and SMR Market Analysis**

 Chapter 10 – **Keys to SMR Success for Suppliers** examines the steps that SMR developers will need to take to make their designs into commercial power plants.

 Chapter 11 – **Keys to SMR Success for Customers** looks further into the factors for SMR deployment from the customer perspective. This chapter also includes a complete listing and analysis of the potential SMR customer base as currently known.

 Chapter 12 – **Overall Analysis of SMR Market** provides broad analysis of the common themes arising from our SMR design assessments and considers the prospects for SMRs within the current nuclear power market paradigm. This chapter also provides summary analysis of the 12 leading SMR designs reviewed in this report and UxC’s forecasts for each designs deployment in the future.

 Chapter 13 – **Summary and Conclusions** reviews and summarizes the contents of this entire report.

In addition, a number of useful items to allow for comparative analysis of the 12 leading SMR designs are found in the accompanying **Appendices** as follows:

Appendix A: Comparative Data for 12 Leading SMR Designs

Appendix B: Pros & Cons Comparisons for 12 Leading SMRs

Finally, in order to help the reader decipher the large number of technical, regulatory, and nuclear industry terms used in this report, a lengthy **Glossary** is provided.